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Chapter 1

Theory involved

1.1 Beam definition

A beam is a horizontal structural element that is capable of withstanding load
primarily by resisting bending. The bending force induced into the material
of the beam as a result of the external loads, own weight, span, and external
reactions to these loads is called a bending moment.

Figure 1.1: a simply supported beam with uniform loading.

Beams are traditionally descriptions of building or civil engineering struc-
tural elements, but structures such as truck or automobile frames, machine
frames, and other mechanical or structural systems contain beam structures
that are designed and analyzed in a similar fashion. It is worth highlighting,
beams form an important part of airplane frames. As such are being discussed
here in this thesis.
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1.2 Types of beams

Beams are characterized by their profile (the shape of their cross-section), their
length, and their material. In contemporary construction, beams are typically
made of steel, reinforced concrete, or wood. One of the most common types
of steel beam is the I-beam or wide-flange beam (also known as a “universal
beam” or, for stouter sections, a “universal column”). This is commonly used
in steel-frame buildings and bridges. Other common beam profiles are the C-
channel, the hollow structural section beam, the pipe, and the angle.

Beams are also described by how they are supported. Supports restrict lat-
eral and/or rotational movements so as to satisfy stability conditions as well as
to limit the deformations to a certain allowance. A simple beam is supported
by a pin support at one end and a roller support at the other end. A beam
with a laterally and rotationally fixed support at one end with no support at
the other end is called a cantilever beam. A beam simply supported at two
points and having one end or both ends extended beyond the supports is called
an overhanging beam.

An important member of airplane wing box is the spar which is an I section
beam running generally along the span of the wing. The role of this beam is
critical, as it carries not only the load of wing and the fuel around, but also the
aerodynamic load exerted by the wing of the aircraft.

1.3 Solving a beam problem

There are two ways that beam bending problems are typically solved: ana-
lytically using statics, and computationally using the Finite Element Method
(FEM) and a computer simulation. There are inaccuracies associated in both
methods. In this project, the beam calculations are performed analytically and
using FEM. The results from the two methods are compared and analyzed.

Figure 1.2: (a) simply supported beam subjected to arbitrary (negative) dis-
tributed load. (b) Deflected beam element. (c) Sign convention for shear force
and bending moment.
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1.4 Analytical approach to solve beam problem

Figure 1.2 depicts a simply supported beam subjected to a general, distributed,
transverse load q(x) assumed to be expressed in terms of force per unit length.
The coordinate system is as shown with x representing the axial coordinate and
y the transverse coordinate. The usual assumptions of elementary beam theory
are applicable here:

1. the beam is loaded only in the y direction;

2. deflections of the beam are small in comparison to the characteristic di-
mensions of the beam;

3. the material of the beam is linearly elastic, isotropic, and homogeneous;

4. the beam is prismatic and the cross section has an axis of symmetry in
the plane of bending.

Figure 1.3: (a) and (b) beam elements with identical end deflections but quite
different deflection characteristics. (c) Physically unacceptable discontinuity at
the connecting node.

Considering a differential length dx of a beam after bending as in fig. 1.3
(with the curvature greatly exaggerated), it is intuitive that the top surface has
decreased in length while the bottom surface has increased in length (clearly
highlighted in fig. 1.2b). Hence, there is a “layer” within the material that must
be undeformed during bending. Refer to fig. 1.2b, assuming that this layer is
located distance ρ from the center of curvature O and choosing this layer to
correspond to y = 0, the length after bending at any position y is expressed as:

ds = (ρ− y)dθ. (1.1)

And the bending strain is then given by:

εx =
ds− dx

dx
=

(ρ− y)dθ − ρdθ

ρdθ
= −y

ρ
. (1.2)

From basic calculus, the radius of curvature of a planar curve is given by:

ρ =

[
1 +

(
dv
dx

)2]3/2
d2v
dx2

(1.3)

Where v = v(x) represents the deflection curve of the neutral surface. In keeping
with small deflection theory, slopes are also small, so this is approximated by:

ρ =
1

d2v
dx2

(1.4)
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Such that the normal strain in the direction of the longitudinal axis as a result
of bending is:

εx = −y d2v

dx2
(1.5)

And the corresponding normal stress is:

σx = Eεx = −Ey d2v

dx2
(1.6)

Where E is the modulus of elasticity of the beam material. Equation (1.6) shows
that, at a given cross section, the normal stress varies linearly with distance from
the neutral surface. As no net axial force is acting on the beam cross section,
the resultant force of the stress distribution given by eq. (1.6) must be zero.
Therefore, at any axial position x along the length, we have:

Fx =

∫
A

σx dA = −
∫
A

Ey
d2v

dx2
dA = 0 (1.7)

Similarly, the internal bending moment at a cross section must be equivalent to
the resultant moment of the normal stress distribution, so:

M(x) = −
∫
A

yσx dA = E
d2v

dx2

∫
A

y2 dA. (1.8)

The integral term in this equation represents the moment of inertia of the
crossectional area about the z axis, so the bending moment expression becomes:

M(x) = EIz
d2v

dx2
(1.9)

Combining eqs. (1.6) and (1.9), we obtain the normal stress equation for beam
bending:

σx = −M(x)y

Iz
= −yE d2v

dx2
(1.10)

Note that the negative sign in this equation ensures that, when the beam is
subjected to positive bending moment per the convention depicted in fig. 1.2c,
compressive (negative) and tensile (positive) stress values are obtained correctly
depending on the sign of the y location value.

1.5 FEM to solve beam problem

The finite element method is a computational scheme to solve field problems
in engineering and science. The technique has very wide application, and has
been used on problems involving stress analysis, fluid mechanics, heat trans-
fer, diffusion, vibrations, electrical and magnetic fields, etc. The fundamental
concept involves dividing the body under study into a finite number of pieces
(sub domains) called elements. Particular assumptions are then made on the
variation of the unknown dependent variable(s) across each element using so-
called interpolation or approximation functions. This approximated variation is
quantified in terms of solution values at special element locations called nodes.
Through this discretization process, the method sets up an algebraic system of
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equations for unknown nodal values which approximate the continuous solution.
Because element size, shape and approximating scheme can be varied to suit the
problem, the method can accurately simulate solutions to problems of complex
geometry and loading and thus this technique has become a very useful and
practical tool.

1.5.1 Basic steps involved in FEM

� Domain discretization.

� Select element type (shape and approximation).

� Derive element equations (variational and energy methods)

� Assemble element equations to form global system

[K] {U} = {F}

where, [K] is the stiffness or property matrix, {U} is the nodal displace-
ment vector, and {F} is the nodal force vector.

� Incorporate boundary and initial conditions.

� Solve assembled system of equations for unknown nodal. displacements
and secondary unknowns of stress and strain Values.

1.5.2 Developing stiffness matrix for a beam element

Using the elementary beam theory, the 2D beam element can now be developed
with the aid of the first theorem of Castigliano. The assumptions and restric-
tions underlying the development are the same as those of elementary beam
theory with the addition of

1. The element is of length L and has two nodes, one at each end.

2. The element is connected to other elements only at the nodes.

3. Element loading occurs only at the nodes.

The basic premise of finite element formulation is to express the continuously
varying field variable in terms of a finite number of values evaluated at element
nodes; we note that, for the flexure element, the field variable of interest is the
transverse displacement v(x) of the neutral surface away from its straight, unde-
flected position. As depicted in fig. 1.3a and fig. 1.3b, transverse deflection Of a
beam is such that the variation of deflection along the length is not adequately
described by displacement of the end points only. The end deflections can be
identical, as illustrated, while the deflected shape of the two cases is quite dif-
ferent. Therefore, the flexure element formulation must take into account the
Slope (rotation) of the beam as well as end-point displacement. In addition to
avoiding the potential ambiguity of displacements, inclusion of beam element
nodal rotations ensures compatibility of rotations at nodal connections between
elements, thus precluding the physically unacceptable discontinuity depicted in
fig. 1.3c.
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Figure 1.4: beam element nodal displacements shown in a positive sense.

In light of these observations regarding rotations, the nodal variables to be
associated with a flexure element are as depicted in fig. 1.4. Element nodes 1
and 2 are located at the ends of the element, and the nodal variables are the
transverse displacements v1 and v2 at the nodes and the slopes (rotations) θ1
and θ2. The nodal variables as shown are in the positive direction, and it is to
be noted that the slopes are to be specified in radians. For convenience, the
superscript (e) indicating element properties is not used at this point, as it is
understood in context that the current discussion applies to a single element.
When multiple elements are involved in examples to follow, the superscript
notation is restored. The displacement function v(x) is to be discretized such
that

v(x) = f (v1, v2, θ1, θ2, x) . (1.11)

Subject to the boundary conditions

v (x = x1) = v1

v (x = x2) = v2

dv

dx

∣∣∣∣
x=x1

= θ1

dv

dx

∣∣∣∣
x=x2

= θ2

(1.12)

Considering the four boundary conditions and the one-dimensional nature of
The problem in terms of the independent variable, we assume the displacement
function in the form

v(x) = a0 + a1x+ a2x
2 + a3x

3 (1.13)

Application of the boundary conditions in succession yields

v(x = 0) = v1 = a0

v(x = L) = v2 = a0 + a1L+ a2L
2 + a3L

3

dv

dx

∣∣∣∣
x=0

= θ1 = a1

dv

dx

∣∣∣∣
x=L

= θ2 = a1 + 2a2L+ 3a3L
2

(1.14)
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The above given equations are solved simultaneously to obtain the coefficients
in terms of the nodal variables as

a0 = v1

a1 = θ1

a2 =
3

L2
(v2 − v1)− 1

L
(2θ1 + θ2)

a3 =
2

L3
(v1 − v2) +

1

L2
(θ1 + θ2)

(1.15)

Substituting into Equation (1.13) and collecting the coefficients of the nodal
variables results in the expression

v(x) =

(
1− 3x2

L2
+

2x3

L3

)
v1 +

(
x− 2x2

L
+
x3

L2

)
θ1

+

(
3x2

L2
− 2x3

L3

)
v2 +

(
x3

L2
− x2

L

)
θ2

(1.16)

Which is of the form

v(x) = N1(x)v1 +N2(x)θ1 +N3(x)v2 +N4(x)θ2 (1.17)

Or, in matrix notation

v(x) =
[
N1 N2 N3 N4

]
v1
θ1
v2
θ2

 = [N ]{δ} (1.18)

Where N1, N2, N3 and N4 are the interpolation functions that describe the
distribution of displacement in terms of nodal values in the nodal displacement
vector {δ}.

Stress distribution on a cross section located at axial position x is given by:

σx(x, y) = −yE d2[N ]

dx2
{δ} (1.19)

Since the normal stress varies linearly on a cross section, the maximum and
minimum values on any cross section occur at the outer surfaces of the element,
Where distance y from the neutral surface is largest. As is customary, we take
the maximum stress to be the largest tensile (positive) value and the minimum
to be the largest compressive (negative) value. Hence, we rewrite eq. (1.19) as:

σx(x) = ymaxE

[(
12x

L3
− 6

L2

)
v1 +

(
6x

L2
− 4

L

)
θ1 +

(
6

L2
− 12x

L3

)
v2

+

(
6x

L2
− 2

L

)
θ2

] (1.20)

the above equation indicates a linear variation of normal stress along the length
of the element and since, once the displacement solution is obtained, the nodal
values are known constants, we need calculate only the stress values at the cross
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sections corresponding to the nodes; that is, at x = 0 and x = L. The stress
values at the nodal sections are given by:

σx(x = 0) = ymaxE

[
6

L2
(v2 − v1)− 2

L
(2θ1 + θ2)

]
σx(x = L) = ymaxE

[
6

L2
(v1 − v2) +

2

L
(2θ2 + θ1)

] (1.21)

Writing the strain energy equation of bending for any constant cross-section
beam that obeys the assumptions of elementary beam theory.

Ue =
EIz

2

∫ L

0

(
d2v

dx2

)2

dx (1.22)

For the strain energy of the finite element being developed, we substitute the
discretized displacement relation of eq. (1.13) to obtain

Ue =
EIz

2

∫ L

0

(
d2N1

dx2
v1 +

d2N2

dx2
θ1 +

d2N3

dx2
v2 +

d2N4

dx2
θ2

)2

dx (1.23)

Applying the first theorem of Castigliano to the strain energy function with
respect to nodal displacement v1 gives the transverse force at node 1 as

∂Ue

∂v1
= F1 = EIz

∫ L

0

(
d2N1

dx2
v1 +

d2N2

dx2
θ1 +

d2N3

dx2
v2 +

d2N4

dx2
θ2

)
d2N1

dx2
dx

(1.24)
While application of the theorem with respect to the rotational displacement
gives the moment as

∂Ue

∂θ1
= M1 = EIz

∫ L

0

(
d2N1

dx2
v1 +

d2N2

dx2
θ1 +

d2N3

dx2
v2 +

d2N4

dx2
θ2

)
d2N2

dx2
dx

(1.25)
Similar results are obtained for node 2. Clubbing together the equations for
node 1 and 2 we have

k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44




v1
θ1
v2
θ2

 =


F1

M1

F2

M2

 (1.26)

Where kmn, are the coefficients of the element stiffness matrix.

kmn = knm = EIz

∫ L

0

d2Nm

dx2
d2Nn

dx2
dx m, n = 1, 4 (1.27)

Using the above integral the complete stiffness matrix for the flexure element is
then written as

[ke] =
EIz
L3


12 6L −12 6L
6L 4L2 −6L 2L2

−12 −6L 12 −6L
6L 2L2 −6L 4L2

 (1.28)
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Chapter 2

A C code to generate beam
stiffness matrix

To develop the code for generating stiffness matrix for any beam element C
programming language was used. Theory as mentioned in the preceding chapter
was used in doing so.

2.1 Introduction to C programming

In computing, C is a general purpose programming Language. Its design pro-
vides constructs that map efficiently to typical machine instructions, and there-
fore it found lasting use in applications that had formerly been coded in assembly
language. C is one of the most widely used programming languages of all time.
Thus using the language code to generate stiffness matrix can be generated.

2.2 C code for generating stiffness matrix

The following code written in C employs the FEM theory given in the perilous
chapter.

1 #inc lude <s t d i o . h>
2 #inc lude <math . h>
3

4 main ( )
5 {
6

7 i n t i , j , m, k , nodes ;
8 f l o a t L [ 6 ] [ 1 ] , l [ 1 0 ] [ 1 ] , c [ 1 0 ] [ 1 ] , T [ 3 0 ] [ 3 0 ] ,n , q ,E ,A1 , r , I , EI ,

L1 , o ;
9

10 p r i n t f ( ”\ t \ t FEM PROGRAM FOR SIMPLE BEAM ANALYSIS \n \n” ) ;
11

12 p r i n t f ( ” Enter the young modulus o f mate r i a l in (N/mˆ2) E= ” ) ;
13 s can f ( ”%f ” , &E) ;
14

15 p r i n t f ( ” Enter the moment o f i n e r t i a f o r the s e c t i o n I =” ) ;
16 s can f ( ”%f%” , &I ) ;
17

18 p r i n t f ( ” Enter the cros s−s e c t i o n a l area A =” ) ;
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19 s can f ( ”%f ” , &A1) ;
20

21 EI = E* I ;
22

23 p r i n t f ( ” Enter the t o t a l l ength o f beam ” ) ;
24 s can f ( ”%f ” , &L1) ;
25

26 p r i n t f ( ” Enter the number o f e lements ” ) ;
27 s can f ( ”%d” , &m) ;
28

29 nodes = m+1;
30

31 p r i n t f ( ”\n \nSTARTING FROM LEFT START ENTERING THE NODE
CONDITIONS \n” ) ;

32

33

34 f o r ( i =0; i< nodes ; i++)
35 {
36 f o r ( j =0; j <1; j++)
37 {
38 p r i n t f ( ”NODE %d load ” , i ) ;
39 s can f ( ”%f ” ,& l [ i ] [ j ] ) ;
40 }
41 }
42

43 p r i n t f ( ”\n” ) ;
44

45

46 f o r ( i =0; i< nodes ; i++)
47 {
48 f o r ( j =0; j <1; j++)
49 {
50 p r i n t f ( ”NODE %d moment ” , i ) ;
51 s can f ( ”%f ” ,&c [ i ] [ j ] ) ;
52 }
53 }
54

55 p r i n t f ( ”\nENTER THE LENGTH OF EACH ELEMENT \n” ) ;
56

57

58 f o r ( i =0; i< m; i++)
59 {
60 f o r ( j =0; j <1; j++)
61 {
62 p r i n t f ( ”NODE %d length ” , i ) ;
63 s can f ( ”%f ” ,&L [ i ] [ j ] ) ;
64 }
65 }
66

67 T[ 0 ] [ 0 ]=1 2 / ( (L [ 0 ] [ 0 ] ) *(L [ 0 ] [ 0 ] ) *(L [ 0 ] [ 0 ] ) ) ;
68 T[ 0 ] [ 1 ]=T[ 1 ] [ 0 ]=T[ 0 ] [ 3 ]=T[ 3 ] [ 0 ]= 6 / ( (L [ 0 ] [ 0 ] ) *(L [ 0 ] [ 0 ] ) ) ;
69 T[ 2 ] [ 0 ]=T[0 ] [2 ]= −12/((L [ 0 ] [ 0 ] ) *(L [ 0 ] [ 0 ] ) *(L [ 0 ] [ 0 ] ) ) ;
70 T[ 2 ] [ 1 ]=T[1 ] [ 2 ]= −6/( (L [ 0 ] [ 0 ] ) *(L [ 0 ] [ 0 ] ) ) ;
71 T[ 3 ] [ 1 ]=T[ 1 ] [ 3 ]= 2 / ( (L [ 0 ] [ 0 ] ) ) ;
72 T[ 1 ] [ 1 ]= 4 / ( (L [ 0 ] [ 0 ] ) ) ;
73

74 k=2*nodes ;
75

76 i f ( k==4)
77 {
78 T[ 2 ] [ 2 ]=1 2 / ( (L [ 0 ] [ 0 ] ) *(L [ 0 ] [ 0 ] ) *(L [ 0 ] [ 0 ] ) ) ;
79 T[ 2 ] [ 3 ]=T[ 3 ] [ 2 ]= −6/((L [ 0 ] [ 0 ] ) *(L [ 0 ] [ 0 ] ) ) ;
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80 T[ 3 ] [ 3 ]= 4/(L [ 0 ] [ 0 ] ) ;
81 }
82

83 i f (k>4)
84 {
85 f o r ( i =1; i<m ; i++)
86 {
87 T[ i * 2 ] [ i *2 ] = (12/ ( (L [ i ] [ 0 ] ) *(L [ i ] [ 0 ] ) *(L [ i ] [ 0 ] ) ) ) + (12/ ( (L

[ ( i −1) ] [ 0 ] ) *(L [ ( i −1) ] [ 0 ] ) *(L [ ( i −1) ] [ 0 ] ) ) ) ;
88

89 T[ i * 2 ] [ ( i *2)+1] = T[ ( i *2) +1] [ i *2 ] = (6/ ( (L [ i ] [ 0 ] ) *(L [ i ] [ 0 ] ) )
) − ( 6/ ( (L [ ( i −1) ] [ 0 ] ) *(L [ ( i −1) ] [ 0 ] ) ) ) ;

90

91 T[ ( i *2) +1 ] [ ( i *2)+1] = (4/ ( (L [ i ] [ 0 ] ) ) ) + (4/ ( (L [ ( i −1) ] [ 0 ] ) ) ) ;
92

93 T[ i * 2 ] [ ( i *2)+2] = T[ ( i *2) +2] [ i *2 ] = −12/((L [ i ] [ 0 ] ) *(L [ i ] [ 0 ] )
*(L [ i ] [ 0 ] ) ) ;

94

95 T[ i * 2 ] [ ( i *2)+3] = T[ ( i *2) +3] [ i *2 ] =6/((L [ i ] [ 0 ] ) *(L [ i ] [ 0 ] ) ) ;
96

97 T[ ( i *2) +1 ] [ ( i *2)+2] = T[ ( i *2) +2 ] [ ( i *2)+1] = −6/((L [ i ] [ 0 ] ) *(L [
i ] [ 0 ] ) ) ;

98

99 T[ ( i *2) +1 ] [ ( i *2)+3] = T[ ( i *2) +3 ] [ ( i *2)+1] = 2 / ( (L [ i ] [ 0 ] ) ) ;
100

101

102 }
103 }
104

105 T[m* 2 ] [m*2 ] = 12 / ( (L [m− 1 ] [ 0 ] ) *(L [m−1 ] [ 0 ] ) *(L [m− 1 ] [ 0 ] ) ) ;
106

107 T[m* 2 ] [ (m*2)+1] = T[ (m*2) +1] [m*2 ] = −6/((L [ (m−1) ] [ 0 ] ) *(L [ (m−1)
] [ 0 ] ) ) ;

108

109 T[ (m*2) +1 ] [ (m*2)+1] = 4/ ( (L [ ( i −1) ] [ 0 ] ) ) ;
110

111

112 p r i n t f ( ”\nSTIFFNESS MATRIX IS \n” ) ;
113

114 f o r ( i =0; i< k ; i++)
115 {
116 p r i n t f ( ”\n” ) ;
117 f o r ( j =0; j<k ; j++)
118 {
119 p r i n t f ( ” %.1 f ” , T[ i ] [ j ] ) ;
120

121 }
122 }
123

124

125 }
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Chapter 3

Code verification

In this section a plane beam shown in fig. 3.1, with a two-element FEM dis-
cretization. The FEM displacement results will be compared with the exact
analytical solution obtained by discontinuity functions.

Figure 3.1: a plane beam problem.

3.1 Problem

The beam span is 2L. It has uniform cross section of elastic modulus E and
moment of inertia I about z. The beam is fixed (clamped) at A and simply
supported at B. It is loaded by a downward uniform distributed force of mag-
nitude w0 acting over the right half span L ≤ x ≤ 2L. The problem is statically
indeterminate.

3.2 Finite element solution

To illustrate the use of finite elements for beam structures we will discretize
the problem of fig. 3.1. Using two plane-beam finite elements as illustrated in
fig. 3.2a.

For the problem

� Force F1 = 144 units

� Force F2 = −(w0 + 432 = 144 units

� Cross-sectional area A = 16 units
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Figure 3.2: (a)two element FEM discretization.(b) The 6 DOF of free free FEM
model. (c) Support conditions and applied forces.

Running the code developed to find out the stiffness matrix for this problem
we find results presented in fig. 3.3. Hence we obtain

EI

L3


12 6L −12 6L 0 0
6L 4L2 −6L 2L2 0 0
−12 −6L 24 0 −12 6L
6L 2L2 0 8L2 −6L 2L2

0 0 −12 −6L 12 −6L
0 0 6L 2L2 −6L 4L2




0
0
v2
θ2
0
θ3

 =


f1
m1

− 1
2w0L
0
f3
0

 (3.1)

this is given by

10
6


0.002058 0.018590 −0.002058 0.018590 0.000000 0.000000
0.018590 0.222222 −0.018590 0.111111 0.000000 0.000000

−0.002058 −0.018590 0.004115 0.000000 −0.002058 0.018590
0.018590 0.111111 0.000000 0.444444 −0.018590 0.111111
0.000000 0.000000 −0.002058 −0.018590 0.002058 −0.018590
0.000000 0.000000 0.018590 0.111111 −0.018590 0.222222




0
0
v2
θ2
0
θ3

 =



f1
m1

− 1
2
w0L

0
f3
0


(3.2)

The applied force f3 = −1/2w0L becomes part of the reaction taken by the
right-end support, since v3 = 0. (In FEM, displacement BCs take precedence
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Figure 3.3: stiffness matrix derived from the code.

over force BCs.) Reduce by removing rows and columns 1, 2 and 5, which
pertain to the known node displacements:

106

 0.004115 0.000000 0.018519
0.000000 0.444444 0.111111
0.018519 0.111111 0.222222

 v2
θ2
θ3

 =

 − 1
2w0L
0
0

 (3.3)

Solving the above matrix equation for value of v2 we get

v2 = v(L) = −0.979776 (3.4)

Analytical result of the same problem gives

v(L) = −1.3297 (3.5)

The difference is approximately 30%. FEM analysis generally produces only
approximations to the analytical solution of the mathematical model. The ap-
proximation can be improved by using more elements over the beam span
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Figure 3.4: deflection of 2 element FEM model versus exact solution.
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