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Literature Survey

Literature- Survey and conclusions

@ Common notion : Inverse problems
used with matrix based system and
for elliptic PDEs  (Heat transfer

problems), rarely used with Fluid
Mechanics.

1

Liu et al(2010): Inverse determination of building heating from the measurements within the turbulent slot-vented enclosure.

Knight et al (2007): Evaluation of fluid-thermal systems by dynamic data driven application systems-part.
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A. Dadone et al (2011): Progressive optimization of inverse fluid dynamics problem.
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Mechanics.

Only few articles in inverse fluid
dynamic: those that do, often cover
it as an aside to heat transfer
problems (Convection)®2.

Only one research paper 3, analyzes
Non linear Hyperbolic PDE: flow
with shocks.

@ Step out of common notion use it

for non elliptical and non matrix
based systems.

Set up guidelines more like Do's and
Dont’s for using Inverse Problems
with Fluid Systems.

Validate use of available inverse
problem methods with a case
involving non linear Fluid flow
phenomenon.

1 Liu et al(2010): Inverse determination of building heating from the measurements within the turbulent slot-vented enclosure.

Knight et al (2007): Evaluation of fluid-thermal systems by dynamic data driven application systems-part.
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Literature Survey

Problem Statement

Core purpose of this project was to conduct study and research on use of
inverse problems with non linear hyperbolic PDE (Euler equation in a
Shock Tube) and conduct survey on sensitivity of using inverse methods
such systems. Inverse Problem Solution for shock tube
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Governing equations
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codes.

@ The time evolution of this problem
described by : solving the Euler
equations (Non-linear 1D Hyperbolic
PDE).

4
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Shock Tube

What is Shock Tube
Governing equations

Euler Equation

3 pu
E (E + p)y,

States and Fluxes

p pu
U= (pu| and F= | pu? +p
E (E + p)u
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Shock Tube
What is Shock Tube
Governing equations

Euler Equation

In matrix form

Euler Equation
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Inverse Problem statement

@ In practice shock tubes with missing initial conditions ©.
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BD Henshall (1957): On some aspects of the use of shock tubes in aerodynamic research.
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Inverse problem Statement
Solution

Problem Statement

Mathematics of inverse problem

Forward Model
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Gary A Sod. (1978): A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws
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Mathematics of inverse problem

Inverse problem Statement
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Solution

e lterative solving approach 8: involves guessing the parameters and
improving the guess iteration after iteration until stopping criteria
(minimum cost) is not met.
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Knight et al (2007): Evaluation of fluid-thermal systems by dynamic data driven application systems-part.
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Problem Statement Inverse probler
Solution

Solution

e lterative solving approach 8: involves guessing the parameters and
improving the guess iteration after iteration until stopping criteria
(minimum cost) is not met.

@ Fluid problems are computationally expensive, iterating over and
over again adds to this expense and the system would be slow (slow
as a turtle).

» Solution

e Optimization (Boost) - fining the best path to minimize the cost
function.

POLYTECH g
Knight et al (2007): Evaluation of fluid-thermal systems by dynamic data driven application systems-part.
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! Forward Model
Forward Model (CFD solution)

Forward Model

@ Finite volume based Euler solver for Shock tube was developed and
validated against exact and experimental(Sods results®) results .

POLYTECH

Mohd Afeef BADRI Application and development of inverse theory to Shock Tube problem 9




Forward Model

Forward Model (CFD solution)

Forward Model

@ Finite volume based Euler solver for Shock tube was developed and
validated against exact and experimental(Sods results®) results .

Gomparsion of Exact and GFD soluons Gomparision of Exact and CF soutrs
I '
eradsaton
0 D Soton 09
09 i 08
08 07
o 07 08
g 2 o5
2 06 k-
& g 04
05 03
04 02
03 | | o1
02 o
:
01 o1
s 4 5 2 1 0 1 2 5 4 s s 4 5 2 1 0 1 2 5 4 s
Locaton location
| Bnl |l | hee

|
[
[ w1y ‘

POLYTECH

Mohd Afeef BADRI Application and development of inverse theory to Shock Tube problem 9




Forward Model

Forward Model (CFD solution)

Forward Model

@ Finite volume based Euler solver for Shock tube was developed and
validated against exact and experimental(Sods results®) results .

Gomparsion of Exact and GFD soluons Gomparision of Exact and CF soutrs
I '
eradsaton
0 D Soton 09
09 i 08
08 07
o 07 08
g 2 o5
2 06 k-
& g 04
05 03
04 02
03 | | o1
02 o
:
01 o1
s 4 5 2 1 0 1 2 5 4 s s 4 5 2 1 0 1 2 5 4 s
Locaton location
| Bnl |l | hee

I
[
|y \uu‘

vohh ooy
POLYTECH - . .
@ Conclusion: Scheme is low on errors, capture the flow physics for
Mohd Afeef BADRI Application and development of inverse theory to Shock Tube problem 9




Inverse Solution

Linearity check

@ Necessary for placing the sensor.
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Inverse Solution
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@ Necessary for placing the sensor.

@ Forward model with minimum computational configuration was run
while changing the initial conditions pressure p, and Density p,.
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Inverse Solution

Linearity check

@ Necessary for placing the sensor.

@ Forward model with minimum computational configuration was run
while changing the initial conditions pressure p, and Density p,.

@ Tests reveled
o Output pressure p vs changing initial pressure p,
[ > ] Output pressure p with changing initial density p,
[ > ] Output velocity u with changing initial pressure p,
o Output velocity u with changing initial density p,
o Output Temperature with changing initial pressure p,
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Inverse Solution

@ Tests on many points revealed x = 0.5 best sensor location.
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Inverse Solution

@ Tests on many points revealed x = 0.5 best sensor location.

@ Sensitivity of solution at x = 0.5 with initial Pressure change
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@ Tests on many points revealed x = 0.5 best sensor location.
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Inverse Solution

1 Parameter identification

@ Results on 1 Parameter identification
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Linearity check 1 Parameter Identification
1 parameter identification (pressure)
2 Par or |dentif on (Pr nd Density)

Inverse Solution

1 Parameter identification

@ Results on 1 Parameter identification

Pressure identification

Cost Function Pressure initial | Error %
T(Po.s — Pexact)’ 1112199 11.2199
1 (Un.5 — Uexact)’ 1112799 112799
L(Po.5s — Pexact)’ + 2 (Un.5 — Uexact)® 1112699 11.2699
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Linearity check 1 Parameter Identification
1 parameter identification (pressure)
2 Parar or |dentif on (Pr nd Density)

Inverse Solution

1 Parameter identification

@ Results on 1 Parameter identification
Pressure identification

Cost Function Pressure initial | Error %
T(Po.s — Pexact)’ 1112199 11.2199
1 (Un.5 — Uexact)’ 1112799 112799
L(Po.5s — Pexact)’ + 2 (Un.5 — Uexact)® 1112699 11.2699

Density Identification

Cost Function Density initial Error %

%(F’o.s — Pexact)” .140109 12.087

%(Uo.s — Uexact)? .140179 12.1439

L(Po.5 — Pexact)” + 2(Up.5 — Uexact)® .140169 12.1359

POLYTECH

Mohd Afeef BADRI Application and development of inverse theory to Shock Tube problem 12 / 22



N 2 Para
Inverse Solution

1 Parameter identification

@ Results on 1 Parameter identification
Pressure identification

Cost Function Pressure initial | Error %
T(Po.s — Pexact)’ 1112199 11.2199
1 (Un.5 — Uexact)’ 1112799 112799
2 (Po.s — Pexact)® + 3 (Up.s — Uexact)” 1112699 112699
Density Identification
Cost Function Density initial Error %
%(F’o.s — Pexact)” .140109 12.087
%(Uo.s — Uexact)? .140179 12.1439
L(Po.5 — Pexact)” + 2(Up.5 — Uexact)® 140169 12.1359

@ Conclusion Pressure based cost functions perform better, it will be
wise choice to include pressure sensors for further two parameter
study.
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1 parameter identification (p
2 Parameter Identification (Pressure and Density)

Inverse Solution

2 Parameter identification- Cost Function plot

025 025
02
02
cost fundBR 015
0.05 01
o 005
o
inital density T o1

CERRL
5

POLYTECH

Mohd Afeef BADRI Application and development of inverse theory to Shock Tube problem 13 / 22



1 parameter identification (p
2 Parameter Identification (Pressure and Density)

Inverse Solution

2 Parameter identification- Cost Function plot

025 025
02
02
cost fundBR 015
0.05 01
o 005
o
inital density T o1

CERRL
5

POLYTECH

a |\ aatiian a o o do od co fa¥a!
Mohd Afeef BADRI Application and development of inverse theory to Shock Tube problem




on

and Density)

Inverse Solution

Gauss-Newton (GN) Algorithm

@ Most famous and commonly used
method, The method was given by
Gauss, It is a modification of
Newton’s method for finding a
minimum of a function.
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Gauss, It is a modification of
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Inverse Solution

Gauss-Newton (GN) Algorithm

@ Most famous and commonly used
method, The method was given by
Gauss, It is a modification of
Newton’s method for finding a
minimum of a function.

@ The Algorithm deals with finding the
minima Using Sensitivity Matrix.

o Algorithm FAI LED

@ Conclusion: there exists correlation between the initial Pressure and
density

@ There is a need to apply algorithms which does not deal with
Matrices
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check 1 Parameter Identifica
e { re)
2 Parameter Identification (Pressure and Density)

Inverse Solution

Simplex/ Nelder-Mead (NM)

@ Given by Nelder-Mead it is gradient ®
. ®
free method (popular in non convex)
to find minimum of a function.

1: Initial Simplex 2: Center of gravity 3: Reflection
(withoutthe worst point) (Default:p = 1.00)

O )
[ e. = (1-0)u u\ .

4a: Contraction ab: Expansion 5: Shrinkage
(Default:y =0.50) (Default: x = 2.00) (Default:o = 0.50)
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[ i st o esimpte ot |
@ Given by Nelder-Mead it is gradient ® . / o

free method (popular in non convex) ¢ ‘
to find minimum of a function. I ./ 'Y

[ ] ®
(] The process generates a sequence Of 1: Initial Simplex ( Z;CEnl:rofgravilv ) 3: Reflection
) . . . . (withoutthe worst point) (Dcfaultp:?.ﬂﬂ}
simplexes i.e. triangles , idea is to o o . [}

- L . B u'= (1-0)u .
decrease cost function j(v) value of \
vertices |terat|ve|y. ® )

@ o - g ~
4a: Contraction 4b: Expansion 5: Shrinkage
(Default:y = 0.50) (Default:x = 2.00) (Default:o = 0.50)

POLYTECH

Mohd Afeef BADRI Application and development of inverse theory to Shock Tube problem 1



Inverse Solution

Simplex/ Nelder-Mead (NM)

@ Given by Nelder-Mead it is gradient
free method (popular in non convex)
to find minimum of a function.

@ The process generates a sequence of

p e
(Pressure and Density)

Main steps of the simplex al

e S

1: Initial Simplex

sur

2: Center of gravity

3: Reflection

i . . . . (withoutthe worst point) (Default:p = 1.00)
simplexes i.e. triangles , idea is to o [}
N . [ e. = (1-0)u .
decrease cost function j(v) value of , \
. . . V- TN =
vertices |terat|ve|y. )
@ o - g ~
4a: Contraction 4ab: Expansion 5: Shrinkage
(Default:y = 0.50) (Default:x = 2.00) (Default:o = 0.50)
Iteration Initial Pressure Initial Density Error in 1171 Error in 1,02
Y1 = pr Yo = pr
Case | 16 0.118 0.131 18.1 % 4.8 %
Case Il 11 0.112 0.122 12.8 % 2.8 %
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Inverse Solution

Simplex/ Nelder-Mead (NM)

p e
(Pressure and Density)

Main steps of the simplex al

sur

@ Given by Nelder-Mead it is gradient ® o
. ° o /!
free method (popular in non convex) ‘ ‘
. . . | v=py
to find minimum of a function. ./ e
@
@ The process generates a sequence of 1: Initial Simplex ( 2 enter of graviy ) 3: Reflection
) . . . . (withoutthe worst point] (Dcfaultp:?.ﬂﬂ}
simplexes i.e. triangles , idea is to o o . [}

- L . B u'= (1-0)u .
decrease cost function j(v) value of , \
vertices iteratively. / e

[ [ S— S _
4a: Contraction 4ab: Expansion 5: Shrinkage
(Default:y =0.50) (Default: x = 2.00) (Default:o = 0.50)
Iteration Initial Pressure Initial Density Error in 1)1 Error in vy
Py = pr Yo = pr
Case | 16 0.118 0.131 18.1 % 4.8 %
Case Il 11 0.112 0.122 12.8 % 2.8 %

e Conclusion Algorithm Works

expensive, and is more or less stable.
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Inverse Solution

Particle Swarm optimization (PSO) Algorithm

@ Genetic Algorithm inspired by
movement of Birds and Bees to find
Food.

o Also gradient free method, particles
inside cost function j(v)) parameter
space mimic birds to find there food
(minimum cost).

Particles Tteration Tnitial  Pressure Initial _ Density Error in 97 Error in 95
Y1 = pr Yo = pr
10 170 10631 13151 631 % 48 %
20 46 10633 13021 6.33 % 4.16 %

POLYTECH

Mohd Afeef BADRI Application and development of inverse theory to Shock Tube problem 16 / 22



Inverse Solution

Particle Swarm optimization (PSO) Algorithm

@ Genetic Algorithm inspired by
movement of Birds and Bees to find
Food.

o Also gradient free method, particles
inside cost function j(v)) parameter
space mimic birds to find there food
(minimum cost).

Particles Tteration Tnitial  Pressure Initial _ Density Error in 97 Error in 95
Y1 = pr Yo = pr
10 170 10631 13151 631 % 48 %
20 46 10633 13021 6.33 % 4.16 %

@ conclusion Algorithms produces excellent results, it is stable but

computationally expensive.
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Steepest Gradient (SG) Algorithm

o First Gradient type algorithm that
takes assistance from Gradient
(vj(¢)) at each point.
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. 2 Parameter Identification (Pressure and Density)
Inverse Solution

Steepest Gradient (SG) Algorithm

o First Gradient type algorithm that
takes assistance from Gradient
(vj(¢)) at each point.

o At each iteration gradient 7j(v)
helps in giving largest increase of j
(direction of decent) .

o Expected to converge very fast.
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(pressure
° (Pressure and Density)
Inverse Solution

Steepest Gradient (SG) Algorithm

12 . .
_I[Exac1t ]
1 | 1 Tactd t
o First GraFilent type algorlthm that 1 Test2 Tedt2 e T
takes assistance from Gradient S o8 Test3 --o-
H H 2 Test1
(vj(¢)) at each point. 5 os
At each iterati dient v/ 5 " Ters
° each iteration gradient /() 2 os
he!ps in giving largest increase of j ozl e
(direction of decent) . o Sow o
@ Expected to converge very fast. 0 02 04 06 08 1 12
Initial Pressure p,
Iteration Initial guess wo Minimum ) Error in %1 (pr) Errorin 9o (pr)
Test 1 4 [0.55 0.6]7 [0.085 0.134]T 15.0 % 72%
Test 2 5 [0.30 0.9]7 [0.119 0.110]7 19.0 % 122 %
Test 3 5 [0.8 0.4 [0.145 0.089] 45.6 % 28.8 %
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Inverse Solution

Steepest Gradient (SG) Algorithm

Exact @
. . . Test 1
o First GraFilent type algorlthm that 1 Test2 Tedt2 e T
takes assistance from Gradient S o8 Test3 --o-
H H 2 Test1
(vj(¢)) at each point. 5 os
At each iterati dient v/ 5 " Ters
° each iteration gradient /() 2 os
he!ps in giving largest increase of j ozl e
(direction of decent) . o Sow o
@ Expected to converge very fast. 0 02 04 06 08 1 12
Initial Pressure p,
Iteration Initial guess wo Minimum ) Error in %1 (pr) Errorin 9o (pr)
Test 1 4 [0.55 0.6]7 [0.085 0.134]T 15.0 % 72%
Test 2 5 [0.30 0.9]7 [0.119 0.110]7 19.0 % 122 %
Test 3 5 [0.8 0.4 [0.145 0.089] 45.6 % 28.8 %

@ Conclusion: Algorithm is not stable, has to be run over and again
to know the exact results, it produces higher error than gradient free

POLYTECH

Mohd Afeef BADRI

and it is computationally inexpensive.

Application and development of inverse theory to Shock Tube problem

17 / 22



pressur:

° (Pressure and Density)
Inverse Solution
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characteristics to SG .
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° (Pressure and Density)
Inverse Solution

Conjugate Gradient (CG) Algorithm

@ Also gradient type, similar
characteristics to SG .

@ Expected to converge faster than
SG: optimal decent direction is used.
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(pressure
° (Pressure and Density)
Inverse Solution

Conjugate Gradient (CG) Algorithm

1 . .
Test1 ——
Test2 e
_ 08 Test 3 1
a Exact e
: P =
@ Also gradient type, similar % 06
. 5
characteristics to SG . S 4 ye
8 -
@ Expected to converge faster than E
SG: optimal decent direction is used. e .
0
0 02 04 06 08 A1
Initial Pressure p,
Iteration Initial guess 0 Minimum Error in 1 (pr) Error in 4o (pr)
Test 1 2 [0.5 0.5]7 [0.109 0.129]T 99 % 329%
Test 2 3 0.9 0.1]7 [0.153 0.089] T 533 % 28.8 %
Test 3 4 [0.6 0.9 [0.110 0.133]7 10.1 % 6.4 %
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Inverse Solution

Conjugate Gradient (CG) Algorithm

1 . .
Test1 ——
Test2 e
_ 08 Test 3 1
a Exact o
: P =
@ Also gradient type, similar % 06
. 5]
characteristics to SG . S 4 ye
8 -
@ Expected to converge faster than E
SG: optimal decent direction is used. ‘ .
0
0 02 04 06 08 1

Initial Pressure p,

Iteration | lInitial guess )0 Minimum o Error in 9 (pr) | Error in ¥3(pr)
Test 1 2 [0.5 0.5]7 [0.109 0.129]T 99 % 329%
Test 2 3 0.9 0.17 [0.153 0.089] 53.3 % 28.8 %
Test 3 4 [0.6 0.9]7 [0.110 0.133] 7 101 % 6.4 %

e Conclusion: Algorithm is not stable, has to be run over and again
to know the exact results, produces more error and it is
computationally inexpensive and faster than SG method.
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check 1 Parameter Identifica
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2 Parameter Identification (Pressure and Density)

Inverse Solution

PSO1CG2

@ Run first the PSO then CG algorithm.
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1 parameter identi
2 Parameter Identification (Pressure and Density)

Inverse Solution

PSO1CG2

@ Run first the PSO then CG algorithm.

1 1 1
iter 1 a iter 24 a Mean value @
2 iter2a
08 - _ 08 08
0.6 3 3 0.6 0.6
2
o, 5
° = a a
04 R s 04p5 0.4 f 2o
0.2 i 702 0.2
o &£ #e & £
0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Initial Pressure p, Initial Pressure p, Initial Pressure p,
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. Parameter Identification (Pressure and Density)
Inverse Solution

PSO1CG2

@ Run first the PSO then CG algorithm.

1 1 1
iter 1 a iter 24 a Mean value @
2 iter2a
_ 08 - _ 08 _ 08
2 06 3 2 o6 Z o8
2 2 2
5 0y 5 5
o e o o o o
0.4 a s 04p5 0.4 f 2o
0.2 i 702 0.2
o &£ #e & £
0 0 4
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Initial Pressure p, Initial Pressure p, Initial Pressure p,

@ This mean value from PSO is given as input to CG algorithm.
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. Parameter Identification (Pressure and Density)
Inverse Solution

PSO1CG2

@ Run first the PSO then CG algorithm.

1 1
iter 1 a iter 24 a Mean value @
2 iter2a
_ 08 - _ 08 _ 08
2 06 3 2 o6 2 06
2 2 2
5 0y 5 5
o e o o o o
04 R s 04p5 0.4 f 2o
0.2 i 702 0.2
o &£ #e & £
0 0 4
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Initial Pressure p, Initial Pressure p, Initial Pressure p,

@ This mean value from PSO is given as input to CG algorithm.

[ Tteration (PSO+CG) | Initial Pressure 1 = p, | Initial Density ¢p = p, | Errorin g3 | Errorin ¢y |
2447=31 | 1063 [ 138 [ 63% | 104% |
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° (Pressure and Density)
Inverse Solution

PSO1CG2

@ Run first the PSO then CG algorithm.

1
iter 1 a iter 24 a Mean value @
2 iter2a
_ 08 - _ 08 _ 08
2 06 3 2 o6 Z o8
2 2 2
5 0y 5 5
o e o o o o
5 04 " s 04 o 5 04 o
T 02 i 702 702
o &£ #e & £
0 0 4
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Initial Pressure p, Initial Pressure p, Initial Pressure p,

@ This mean value from PSO is given as input to CG algorithm.

[ Tteration (PSO+CG) | Initial Pressure 1 = p, | Initial Density ¢p = p, | Errorin g3 | Errorin ¢y |
2447=31 | 1063 [ 138 [ 63% | 104% |

@ Conclusion: Performs better than PSO and CG individually. Stable,
Low on error and moderate on computational cost.
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pressure
° (Pressure and Density)
Inverse Solution

PSO1CG2

@ Run first the PSO then CG algorithm.

1 1
iter 1 a iter 24 a Mean value @
2 iter2a
_ 08 - _ 08 _ 08
2 06 3 2 o6 Z o8
2 2 2
5 0y 5 5
o e o o o o
5 04 " s 04 o 5 04 o
T 02 i 702 702
o &£ #e & £
0 0 4
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Initial Pressure p, Initial Pressure p, Initial Pressure p,

@ This mean value from PSO is given as input to CG algorithm.

[ Tteration (PSO+CG) | Initial Pressure 1 = p, | Initial Density ¢p = p, | Errorin g3 | Errorin ¢y |
2447=31 | 1063 [ 138 [ 63% | 104% |

@ Conclusion: Performs better than PSO and CG individually. Stable,
Low on error and moderate on computational cost.

@ Used with 20 particle PSO saved 22 PSO iterations, 22 x 20 = 440
forward model iterations.
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PSO2CG1

@ Run first the CG and then PSO algorithm.
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Inverse Solution

PSO2CG1

@ Run first the CG and then PSO algorithm.

@ Result from CG gradient is converted into local space and PSO is
run.
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. Parameter Identification (Pressure and Density)
Inverse Solution

PSO2CG1

@ Run first the CG and then PSO algorithm.
@ Result from CG gradient is converted into local space and PSO is

run.
0.165 . % 0.165 . % 0.165 v S
0.16 ter 0.16 fer 0.16 ter
~ 0.155 - 0.155 - 0.155
< < <
Z 0.15 Z 0.15 Z 0.15
g o - * " g o g o
5 0.14 5 0.14 * 5 0.14
E 0.135 E 0.135 Ky E 0.135
013 B 013 "9‘* 013 *
0.125 * 0.125 0.125
009 01 011 012 013 0.14 009 01 011 012 013 0.14 0.09 01 011 012 013 0.14
Initial Pressure p, Initial Pressure p, Initial Pressure p,
[ Tteration (CG+PSO) [ Initial Pressure ¢y = p, | Initial Density tbp = p, | Errorin <y | Errorin 45 |
[ 6+7=13 106 [ 131 [ 61% [ 416% |
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1 parameter identifi on (p
. 2 Parameter Identification (Pressure and Density)
Inverse Solution

PSO2CG1

@ Run first the CG and then PSO algorithm.
@ Result from CG gradient is converted into local space and PSO is

run.
0.165 . % 0.165 . % 0.165 v S
0.16 ter 0.16 fer 0.16 ter
~ 0.155 - 0.155 - 0.155
< < <
> 015 > 015 > 015
g o - * " g o g o
5 0.14 5 0.14 * 5 0.14
E 0.135 E 0.135 Ky E 0.135
013 B 013 "9‘* 013 *
0.125 * 0.125 0.125
009 01 011 012 013 0.14 009 01 011 012 013 0.14 0.09 01 011 012 013 0.14
Initial Pressure p, Initial Pressure p, Initial Pressure p,
[ Tteration (CG+PSO) [ Initial Pressure ¢y = p, | Initial Density tbp = p, | Errorin <y | Errorin 45 |
[ 6+7=13 106 [ 131 [ 61% [ 416% |

@ conclusion: A stable, low error and computationally economic
algorithm. Performed better than PSO1CG2.
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° (Pressure and Density)
Inverse Solution

PSO2CG1
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Run first the CG and then PSO algorithm.
Result from CG gradient is converted into local space and PSO is

run.
0.165 . % 0.165 . % 0.165 v S
0.16 ter 0.16 fer 0.16 ter
~ 0.155 - 0.155 - 0.155
< < <
> 015 > 015 > 015
g o - * " g o g o
5 0.14 5 0.14 * 5 0.14
E 0.135 E 0.135 Ky E 0.135
013 B 013 "9‘* 013 *
0.125 * 0.125 0.125
009 01 011 012 013 0.14 009 01 011 012 013 0.14 0.09 01 011 012 013 0.14
Initial Pressure p, Initial Pressure p, Initial Pressure p,
[ Tteration (CG+PSO) [ Initial Pressure ¢y = p, | Initial Density tbp = p, | Errorin <y | Errorin 45 |
[ 6+7=13 106 [ 131 [ 61% [ 416% |

conclusion: A stable, low error and computationally economic
algorithm. Performed better than PSO1CG2.

Used with 10 particle PSO, saved 163 PSO iterations,
163 x 10 = 1630 forward model iterations.
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Inverse shock tube problems has proved counter is possible (non
matrix and non elliptic).

Certain closures have been presented that may be followed in future
to solve other inverse fluid system problems.

Cost functions in inverse fluid dynamics are not well behaved (2D
are always non convex).

Avoid shock with data point interaction for better cost function.

Right choice of optimization algorithm can make or break the
solution: select wisely.

GN mostly will never perform for static initial conditions, Gradient
free are best for inverse fluid mechanics problems.
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Project Conclusion

POLYTECH

Inverse shock tube problems has proved counter is possible (non
matrix and non elliptic).

Certain closures have been presented that may be followed in future
to solve other inverse fluid system problems.

Cost functions in inverse fluid dynamics are not well behaved (2D
are always non convex).

Avoid shock with data point interaction for better cost function.

Right choice of optimization algorithm can make or break the
solution: select wisely.

GN mostly will never perform for static initial conditions, Gradient
free are best for inverse fluid mechanics problems.

Two new algorithms developed PSO1CG2 and PSOCGL that can be
further used.
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conclusion

Thank You For your Attention

Pressure based cost function at Xyg,=-2.5 - Pressure based cost function at Xg,=2

024 -
0.238 0.004 \ /
£ 0286 £ 0003 b\
§ 0234 -~ 5 \
2 o232 . T 0002 4
2 o - g 2 0001
g 0228 R S S 0 ~
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0224 |2 - -0.001
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