Application and development of inverse theory to Shock Tube problem

Mohd Afeef BADRI

Guided by:
Dr. Yann Favennec
Dr. Ahmed Ould El MOCTAR

Ecole polytechnique Nantes

29, July, 2015

outline

- 1 Literature Survey
- 2 Shock Tube
- Problem Statement
- 4 Forward Model (CFD solution)
- **5** Inverse Solution
- 6 conclusion

• Common notion : Inverse problems used with matrix based system and for elliptic PDEs (Heat transfer problems), rarely used with Fluid Mechanics.

Liu et al (2010): Inverse determination of building heating from the measurements within the turbulent slot-vented enclosure.

Knight et al (2007): Evaluation of fluid-thermal systems by dynamic data driven application systems-part.

A. Dadone et al (2011): Progressive optimization of inverse fluid dynamics problem. Application and development of inverse theory to Shock Tube problem

- Common notion: Inverse problems used with matrix based system and for elliptic PDEs (Heat transfer problems), rarely used with Fluid Mechanics.
- Only few articles in inverse fluid dynamic: those that do, often cover it as an aside to heat transfer problems (Convection)^{1,2}.

¹ Liu et al(2010): Inverse determination of building heating from the measurements within the turbulent slot-vented enclosure.

² Knight et al (2007): Evaluation of fluid-thermal systems by dynamic data driven application systems-part.

A. Dadone et al (2011): Progressive optimization of inverse fluid dynamics problem.

- Common notion: Inverse problems used with matrix based system and for elliptic PDEs (Heat transfer problems), rarely used with Fluid Mechanics.
- Only few articles in inverse fluid dynamic: those that do, often cover it as an aside to heat transfer problems (Convection)^{1,2}.
- Only one research paper ³, analyzes Non linear Hyperbolic PDE: flow with shocks.

¹ Liu et al(2010): Inverse determination of building heating from the measurements within the turbulent slot-vented enclosure.

Knight et al (2007): Evaluation of fluid-thermal systems by dynamic data driven application systems-part.

³ A. Dadone et al (2011): Progressive optimization of inverse fluid dynamics problem.

- Common notion: Inverse problems used with matrix based system and for elliptic PDEs (Heat transfer problems), rarely used with Fluid Mechanics.
- Only few articles in inverse fluid dynamic: those that do, often cover it as an aside to heat transfer problems (Convection)^{1,2}.
- Only one research paper ³, analyzes Non linear Hyperbolic PDE: flow with shocks.

 Step out of common notion use it for non elliptical and non matrix based systems.

¹ Liu et al(2010): Inverse determination of building heating from the measurements within the turbulent slot-vented enclosure.

² Knight et al (2007): Evaluation of fluid-thermal systems by dynamic data driven application systems-part.

A. Dadone et al (2011): Progressive optimization of inverse fluid dynamics problem.

- Common notion: Inverse problems used with matrix based system and for elliptic PDEs (Heat transfer problems), rarely used with Fluid Mechanics.
- Only few articles in inverse fluid dynamic: those that do, often cover it as an aside to heat transfer problems (Convection)^{1,2}.
- Only one research paper ³, analyzes Non linear Hyperbolic PDE: flow with shocks.

- Step out of common notion use it for non elliptical and non matrix based systems.
- Set up guidelines more like Do's and Dont's for using Inverse Problems with Fluid Systems.

¹ Liu et al(2010): Inverse determination of building heating from the measurements within the turbulent slot-vented enclosure.

² Knight et al (2007): Evaluation of fluid-thermal systems by dynamic data driven application systems-part.

A. Dadone et al (2011): Progressive optimization of inverse fluid dynamics problem.

- Common notion: Inverse problems used with matrix based system and for elliptic PDEs (Heat transfer problems), rarely used with Fluid Mechanics.
- Only few articles in inverse fluid dynamic: those that do, often cover it as an aside to heat transfer problems (Convection)^{1,2}.
- Only one research paper ³, analyzes
 Non linear Hyperbolic PDE: flow
 with shocks.

- Step out of common notion use it for non elliptical and non matrix based systems.
- Set up guidelines more like Do's and Dont's for using Inverse Problems with Fluid Systems.
- Validate use of available inverse problem methods with a case involving non linear Fluid flow phenomenon.

¹ Liu et al(2010): Inverse determination of building heating from the measurements within the turbulent slot-vented enclosure.

² Knight et al (2007): Evaluation of fluid-thermal systems by dynamic data driven application systems-part.

³ A. Dadone et al (2011): Progressive optimization of inverse fluid dynamics problem.

Problem Statement

Core purpose of this project was to conduct study and research on use of inverse problems with non linear hyperbolic PDE (Euler equation in a Shock Tube) and conduct survey on sensitivity of using inverse methods such systems. Inverse Problem Solution for shock tube

Inverse Problem Solution for Shock tubes

Inverse Problem Solution for Shock tubes

What is this Shock Tube?

 A device for detonation, transonic, supersonic and hypersonic testing, it was fist invented in France^{4,5} (Still used in CNRS IUSTI lab Marseilles).

Driven Section Section

⁴ P. Vieille (1899): Sur les discontinuites produites par la detente brusque de gas comprimes.
5 N. A. Fomin (2010): 110 vears of experiments on shock tubes.

- A device for detonation, transonic. supersonic and hypersonic testing, it was fist invented in France^{4,5} (Still used in CNRS IUSTI lab Marseilles).
- The Sods shock tube problem. named after Gary A. Sod, a common test case for the accuracy of CFD codes.

POLYTECH"

P. Vieille (1899): Sur les discontinuites produites par la detente brusque de gas comprimes.

- A device for detonation, transonic. supersonic and hypersonic testing, it was fist invented in France^{4,5} (Still used in CNRS IUSTI lab Marseilles).
- The Sods shock tube problem. named after Gary A. Sod, a common test case for the accuracy of CFD codes
- The time evolution of this problem described by : solving the Euler equations (Non-linear 1D Hyperbolic PDE).

P. Vieille (1899): Sur les discontinuites produites par la detente brusque de gas comprimes.

POLYTECH'

What is this non linear hyperbolic PDE?

Continuity

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0$$

Continuity

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0$$

Momentum

$$\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u^2}{\partial x} + \frac{\partial p}{\partial x} = 0$$

Continuity

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0$$

Momentum

$$\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u^2}{\partial x} + \frac{\partial p}{\partial x} = 0$$

Energy

$$\frac{\partial E}{\partial t} + \frac{\partial Eu}{\partial x} + \frac{\partial pu}{\partial x} = 0$$

Continuity

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0$$

Momentum

$$\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u^2}{\partial x} + \frac{\partial p}{\partial x} = 0$$

Energy

$$\frac{\partial E}{\partial t} + \frac{\partial Eu}{\partial x} + \frac{\partial pu}{\partial x} = 0$$

In matrix form

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \rho u \\ E \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} \rho u \\ \rho u^2 + p \\ (E + \rho)u \end{pmatrix} = 0$$

States and Fluxes

$$U = \begin{pmatrix} \rho \\ \rho u \\ E \end{pmatrix} \quad \text{and} \quad F = \begin{pmatrix} \rho u \\ \rho u^2 + \rho \\ (E + \rho)u \end{pmatrix}$$

Continuity

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0$$

Momentum

$$\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u^2}{\partial x} + \frac{\partial p}{\partial x} = 0$$

Energy

$$\frac{\partial E}{\partial t} + \frac{\partial Eu}{\partial x} + \frac{\partial pu}{\partial x} = 0$$

In matrix form

$$\frac{\partial}{\partial t} \begin{pmatrix} \rho \\ \rho u \\ E \end{pmatrix} + \frac{\partial}{\partial x} \begin{pmatrix} \rho u \\ \rho u^2 + p \\ (E + \rho)u \end{pmatrix} = 0$$

States and Fluxes

$$U = \begin{pmatrix} \rho \\ \rho u \\ E \end{pmatrix} \quad \text{and} \quad F = \begin{pmatrix} \rho u \\ \rho u^2 + \rho \\ (E + \rho)u \end{pmatrix}$$

Euler Equation

$$\frac{\partial U}{\partial t} + \frac{\partial F}{\partial x} = 0$$

Inverse Problem Solution for Shock tubes

• In practice shock tubes with missing initial conditions ⁶.

- In practice shock tubes with missing initial conditions ⁶.
- Inverse problem of reconstruction of past (*initial conditions*) given minimal present data (Experiments/Exact).

- In practice shock tubes with missing initial conditions ⁶.
- Inverse problem of reconstruction of past (initial conditions) given minimal present data (Experiments/Exact).
- Experimental Data: Pressure and Velocity sensors.

- In practice shock tubes with missing initial conditions ⁶.
- Inverse problem of reconstruction of past (initial conditions) given minimal present data (Experiments/Exact).
- Experimental Data: Pressure and Velocity sensors.
- Parameter estimation type inverse problem: 1 or 2 parameters estimation i.e the initial Pressure p_r and Density ρ_r on right (Working section).

- In practice shock tubes with missing initial conditions ⁶.
- Inverse problem of reconstruction of past (*initial conditions*) given minimal present data (Experiments/Exact).
- Experimental Data: Pressure and Velocity sensors.
- Parameter estimation type inverse problem: 1 or 2 parameters estimation i.e the initial Pressure p_r and Density ρ_r on right (Working section).
- Note: complete initial conditions (Right p_r , ρ_r , u_r , T_r and Left ρ_l , p_l , u_l , T_l).

- In practice shock tubes with missing initial conditions ⁶.
- Inverse problem of reconstruction of past (*initial conditions*) given minimal present data (Experiments/Exact).
- Experimental Data: Pressure and Velocity sensors.
- Parameter estimation type inverse problem: 1 or 2 parameters estimation i.e the initial Pressure p_r and Density ρ_r on right (Working section).
- Note: complete initial conditions (Right p_r , ρ_r , u_r , T_r and Left ρ_l , p_l , u_l , T_l).
- Primitives: ρ_l , p_l , T_l = 1.0; Velocities: u_l = u_r = 0.0;
- Temprature : $T_r = p_r/\rho_r$.

t = 0

POLYTECH"

Forward Model

$$\begin{split} &\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0 \\ &\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u^2}{\partial x} + \frac{\partial \rho}{\partial x} = 0 \\ &\frac{\partial E}{\partial t} + \frac{\partial E u}{\partial x} + \frac{\partial \rho u}{\partial x} = 0 \\ &7_{\text{for } t} = 0 \begin{cases} (\rho_l = 1.0, \rho_l = 1.0, u_l = 0.0), & x < x_0, \\ (\rho_r = 0.125, \rho_r = 0.1, u_r = 0.0), & x > x_0, \end{cases} \end{split}$$

Forward Model $7_{\text{for } t = 0} \begin{cases} (\rho_I = 1.0, p_I = 1.0, u_I = 0.0), & x < x_0, \\ (\rho_r = 0.125, p_r = 0.1, u_r = 0.0), & x > x_0, \end{cases}$

Inverse Model

$$\begin{split} &\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0 \\ &\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u^2}{\partial x} + \frac{\partial \rho}{\partial x} = 0 \\ &\frac{\partial E}{\partial t} + \frac{\partial E u}{\partial x} + \frac{\partial \rho u}{\partial x} = 0 \\ &\text{for } t = 0 \left\{ (\rho_I = 1.0, \rho_I = 1.0, u_I = 0.0), \quad x \leq x_0, \\ &u(x_{data}, t) \text{ or/and } \rho(x_{data}, t) = (\text{Experimental data}) \right. \end{split}$$

Inverse Model

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0$$

$$\frac{\partial pu}{\partial t} + \frac{\partial pu}{\partial x} + \frac{\partial p}{\partial x} = 0$$
 $\frac{\partial E}{\partial t} = \frac{\partial E}{\partial t} = 0$

$$\frac{\partial E}{\partial t} + \frac{\partial Eu}{\partial x} + \frac{\partial pu}{\partial x} = 0$$

for
$$t = 0$$
 $\{(\rho_I = 1.0, \rho_I = 1.0, u_I = 0.0), x \le x_0,$

$$\textit{u}(\textit{x}_{\textit{data}},\,t)$$
 or/and $\textit{p}(\textit{x}_{\textit{data}},\,t) = (\texttt{Experimental data})$

Inverse Model

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} &= 0 \\ \frac{\partial \rho u}{\partial t} + \frac{\partial \rho u^2}{\partial x} + \frac{\partial \rho}{\partial x} &= 0 \\ \frac{\partial E}{\partial t} + \frac{\partial E u}{\partial x} + \frac{\partial \rho u}{\partial x} &= 0 \end{aligned}$$

for
$$t = 0$$
 $\{(\rho_I = 1.0, \rho_I = 1.0, u_I = 0.0), x \le x_0,$

$$u(x_{data}, t)$$
 or/and $p(x_{data}, t) = (Experimental data)$

Solution

• Iterative solving approach ⁸: involves guessing the parameters and improving the guess iteration after iteration until stopping criteria (minimum cost) is not met.

Solution

- Iterative solving approach 8: involves guessing the parameters and improving the guess iteration after iteration until stopping criteria (minimum cost) is not met.
- Fluid problems are computationally expensive, iterating over and over again adds to this expense and the system would be slow (slow as a turtle).

Solution

- Iterative solving approach 8: involves guessing the parameters and improving the guess iteration after iteration until stopping criteria (minimum cost) is not met.
- Fluid problems are computationally expensive, iterating over and over again adds to this expense and the system would be slow (slow as a turtle).
- Solution

Solution

- Iterative solving approach 8: involves guessing the parameters and improving the guess iteration after iteration until stopping criteria (minimum cost) is not met.
- Fluid problems are computationally expensive, iterating over and over again adds to this expense and the system would be slow (slow as a turtle).

Solution

 Optimization (Boost) - fining the best path to minimize the cost function.

Solution

FORWARD MODEL

Inverse Problem Solution for Shock tubes

Forward Model

• Finite volume based Euler solver for Shock tube was developed and validated against exact and experimental(Sods results⁹) results .

Forward Model

 Finite volume based Euler solver for Shock tube was developed and validated against exact and experimental(Sods results⁹) results .

Forward Model

 Finite volume based Euler solver for Shock tube was developed and validated against exact and experimental(Sods results⁹) results .

Conclusion: Scheme is low on errors, capture the flow physics for

Linearity check 1 Parameter Identification

Linearity check

Necessary for placing the sensor.

Linearity check

- Necessary for placing the sensor.
- Forward model with minimum computational configuration was run while changing the initial conditions pressure p_r and Density ρ_r .

Linearity check

- Necessary for placing the sensor.
- Forward model with minimum computational configuration was run while changing the initial conditions pressure p_r and Density ρ_r .
- Tests reveled
 - Output pressure p vs changing initial pressure p_r
 - $lue{}$ Output pressure p with changing initial density ho_r
 - ightharpoonup Output velocity u with changing initial pressure p_r
 - ightharpoonup Output velocity u with changing initial density ho_r
 - ightharpoonup Output Temperature with changing initial pressure p_r

Linearity check 1 Parameter Identification

• Tests on many points revealed x = 0.5 best sensor location.

- Tests on many points revealed x = 0.5 best sensor location.
- Sensitivity of solution at x = 0.5 with initial Pressure change

- Tests on many points revealed x = 0.5 best sensor location.
- Sensitivity of solution at x = 0.5 with initial Pressure change

• Sensitivity of solution at x = 0.5 with initial Density change

1 parameter identification (pressure)

1 Parameter identification

Results on 1 Parameter identification

- 1 parameter identification (pressure)

1 Parameter identification

Results on 1 Parameter identification

Pressure identification

Cost Function	Pressure initial	Error %
$\frac{1}{2}(P_{0.5} - P_{\text{exact}})^2$.1112199	11.2199
$\frac{1}{2}(U_{0.5} - U_{exact})^2$.1112799	11.2799
$\frac{1}{2}(P_{0.5} - P_{exact})^2 + \frac{1}{2}(U_{0.5} - U_{exact})^2$.1112699	11.2699

- Linearity check 1 Parameter Identification
- $1\ \mathsf{parameter}\ \mathsf{identification}\ \mathsf{(pressure)}$
- 1 Parameter identification

Results on 1 Parameter identification

Pressure identification

Cost Function	Pressure initial	Error %
$\frac{1}{2}(P_{0.5} - P_{exact})^2$.1112199	11.2199
$\frac{1}{2}(U_{0.5} - U_{exact})^2$.1112799	11.2799
$\frac{1}{2}(P_{0.5} - P_{exact})^2 + \frac{1}{2}(U_{0.5} - U_{exact})^2$.1112699	11.2699

Density Identification

Cost Function	Density initial	Error %
$\frac{1}{2}(P_{0.5} - P_{exact})^2$.140109	12.087
$\frac{1}{2}(U_{0.5} - U_{exact})^2$.140179	12.1439
$\frac{1}{2}(P_{0.5} - P_{exact})^2 + \frac{1}{2}(U_{0.5} - U_{exact})^2$.140169	12.1359

- Linearity check 1 Parameter Identification
- 1 parameter identification (pressure)

1 Parameter identification

Results on 1 Parameter identification

Pressure identification

Cost Function	Pressure initial	Error %
$\frac{1}{2}(P_{0.5} - P_{exact})^2$.1112199	11.2199
$\frac{1}{2}(U_{0.5} - U_{exact})^2$.1112799	11.2799
$\frac{1}{2}(P_{0.5} - P_{exact})^2 + \frac{1}{2}(U_{0.5} - U_{exact})^2$.1112699	11.2699

Density Identification

Cost Function	Density initial	Error %
$\frac{1}{2}(P_{0.5} - P_{exact})^2$.140109	12.087
$\frac{1}{2}(U_{0.5} - U_{exact})^2$.140179	12.1439
$\frac{1}{2}(P_{0.5} - P_{exact})^2 + \frac{1}{2}(U_{0.5} - U_{exact})^2$.140169	12.1359

 Conclusion Pressure based cost functions perform better, it will be wise choice to include pressure sensors for further two parameter study.

2 Parameter identification- Cost Function plot

velocity and pressure based pressure based Cost function plot

- nearity check 1 Parameter Identification
- 2 Parameter Identification (Pressure and Density)

2 Parameter identification- Cost Function plot

velocity and pressure based pressure based Cost function plot

- Linearity check 1 Parameter Identification
- 2 Parameter Identification (Pressure and Density)

Gauss-Newton (GN) Algorithm

 Most famous and commonly used method, The method was given by Gauss, It is a modification of Newton's method for finding a minimum of a function.

- Linearity check 1 Parameter Identification
- 2 Parameter Identification (Pressure and Density)

Gauss-Newton (GN) Algorithm

- Most famous and commonly used method, The method was given by Gauss, It is a modification of Newton's method for finding a minimum of a function.
- The Algorithm deals with finding the minima Using Sensitivity Matrix.

- Linearity check 1 Parameter Identification
- 2 Parameter Identification (Pressure and Density)

Gauss-Newton (GN) Algorithm

- Most famous and commonly used method, The method was given by Gauss, It is a modification of Newton's method for finding a minimum of a function.
- The Algorithm deals with finding the minima Using Sensitivity Matrix.
 - Algorithm FAILED.
 - Conclusion: there exists correlation between the initial Pressure and density
 - There is a need to apply algorithms which does not deal with Matrices

- Linearity check 1 Parameter Identification
- 1 parameter identification (pressure)
 2 Parameter Identification (Pressure and Density)

 Given by Nelder-Mead it is gradient free method (popular in non convex) to find minimum of a function.

- Linearity check 1 Parameter Identification
- 2 Parameter Identification (Pressure and Density)

- Given by Nelder-Mead it is gradient free method (popular in non convex) to find minimum of a function.
- The process generates a sequence of simplexes i.e. triangles , idea is to decrease cost function $j(\psi)$ value of vertices iteratively.

- inearity check 1 Parameter Identification
- 2 Parameter Identification (Pressure)

- Given by Nelder-Mead it is gradient free method (popular in non convex) to find minimum of a function.
- The process generates a sequence of simplexes i.e. triangles , idea is to decrease cost function $j(\psi)$ value of vertices iteratively.

		Iteration	Initial Pressure $\psi_1 = p_r$	Initial Density $\psi_2 = \rho_r$	Error in ψ_1	Error in ψ_2
	Case I	16	0.118	0.131	18.1 %	4.8 %
- 1	Case II	11	0.112	0.122	12.8 %	2.8 %

- inearity check 1 Parameter Identification
- 2 Parameter Identification (Pressure and Density)

- Given by Nelder-Mead it is gradient free method (popular in non convex) to find minimum of a function.
- The process generates a sequence of simplexes i.e. triangles , idea is to decrease cost function $j(\psi)$ value of vertices iteratively.

		Iteration	Initial Pressure $\psi_1 = p_r$	Initial Density $\psi_2 = \rho_r$	Error in ψ_1	Error in ψ_2
	Case I	16	0.118	0.131	18.1 %	4.8 %
i	Case II	11	0.112	0.122	12.8 %	2.8 %

• Conclusion Algorithm Works well, computationally not much expensive, and is more or less stable.

inearity check 1 Parameter Identification

2 Parameter Identification (Pressure and Density)

Particle Swarm optimization (PSO) Algorithm

2 Parameter Identification (Pressure and Density)

Particle Swarm optimization (PSO) Algorithm

 Genetic Algorithm inspired by movement of Birds and Bees to find Food

Particle Swarm optimization (PSO) Algorithm

- Genetic Algorithm inspired by movement of Birds and Bees to find Food.
- Also gradient free method, particles inside cost function $j(\psi)$ parameter space mimic birds to find there food (minimum cost).

Particle Swarm optimization (PSO) Algorithm

- Genetic Algorithm inspired by movement of Birds and Bees to find Food.
- Also gradient free method, particles inside cost function $j(\psi)$ parameter space mimic birds to find there food (minimum cost).

ſ	Particles	Iteration	Initial Pressure	Initial Density	Error in ψ_1	Error in ψ_2
			$\psi_1 = \rho_r$	$\psi_2 = \rho_r$		
ſ	10	170	.10631	.13151	6.31 %	4.8 %
ſ	20	46	.10633	.13021	6.33 %	4.16 %

2 Parameter Identification (Pressure and Density)

Particle Swarm optimization (PSO) Algorithm

- Genetic Algorithm inspired by movement of Birds and Bees to find Food.
- Also gradient free method, particles inside cost function $j(\psi)$ parameter space mimic birds to find there food (minimum cost).

Particles	Iteration	Initial Pressure $\psi_1 = p_r$	Initial Density $\psi_2 = \rho_r$	Error in ψ_1	Error in ψ_2
10	170	.10631	.13151	6.31 %	4.8 %
20	46	.10633	.13021	6.33 %	4.16 %

 conclusion Algorithms produces excellent results, it is stable but computationally expensive.

inearity check 1 Parameter Identification

1 parameter identification (pressure)
2 Parameter Identification (Pressure and Density)

Steepest Gradient (SG) Algorithm

• First Gradient type algorithm that takes assistance from Gradient $(\nabla j(\psi))$ at each point.

- Linearity check 1 Parameter Identification
- 2 Parameter Identification (Pressure and Density)

Steepest Gradient (SG) Algorithm

- First Gradient type algorithm that takes assistance from Gradient $(\nabla j(\psi))$ at each point.
- At each iteration gradient $\nabla j(\psi)$ helps in giving largest increase of j (direction of decent).

1 parameter identification (pressure)
2 Parameter Identification (Pressure and Density)

Steepest Gradient (SG) Algorithm

- First Gradient type algorithm that takes assistance from Gradient $(\nabla j(\psi))$ at each point.
- At each iteration gradient $\nabla j(\psi)$ helps in giving largest increase of j (direction of decent) .
- Expected to converge very fast.

- Linearity check 1 Parameter Identification
- 2 Parameter Identification (Pressure and Density)

Steepest Gradient (SG) Algorithm

- First Gradient type algorithm that takes assistance from Gradient $(\nabla j(\psi))$ at each point.
- At each iteration gradient $\nabla j(\psi)$ helps in giving largest increase of j (direction of decent) .
- Expected to converge very fast.

	Iteration	Initial guess ψ^0	Minimum $\overline{\psi}$	Error in $\psi_1(p_r)$	Error in $\psi_2(\rho_r)$
Test 1	4	[0.55 0.6]	[0.085 0.134]	15.0 %	7.2 %
Test 2	5	[0.30 0.9] ^T	[0.119 0.110] ^T	19.0 %	12.2 %
Test 3	5	[0.8 0.4]	[0.145 0.089]	45.6 %	28.8 %

- inearity check 1 Parameter Identification
- 2 Parameter Identification (Pressure and Density)

Steepest Gradient (SG) Algorithm

- First Gradient type algorithm that takes assistance from Gradient $(\nabla j(\psi))$ at each point.
- At each iteration gradient $\nabla j(\psi)$ helps in giving largest increase of j (direction of decent) .
- Expected to converge very fast.

	Iteration	Initial guess ψ^0	Minimum $\overline{\psi}$	Error in $\psi_1(p_r)$	Error in $\psi_2(\rho_r)$
Test 1	4	[0.55 0.6]	[0.085 0.134]	15.0 %	7.2 %
Test 2	5	[0.30 0.9] ^T	[0.119 0.110] ^T	19.0 %	12.2 %
Test 3	5	[0.8 0.4]	[0.145 0.089] T	45.6 %	28.8 %

 Conclusion: Algorithm is not stable, has to be run over and again to know the exact results, it produces higher error than gradient free and it is computationally inexpensive.

Linearity check 1 Parameter Identification

2 Parameter Identification (Pressure and Density)

Conjugate Gradient (CG) Algorithm

 Also gradient type, similar characteristics to SG.

inearity check 1 Parameter Identification

2 Parameter Identification (Pressure and Density)

Conjugate Gradient (CG) Algorithm

- Also gradient type, similar characteristics to SG.
- Expected to converge faster than SG: optimal decent direction is used.

- inearity check 1 Parameter Identification
- 2 Parameter Identification (Pressure and Density)

Conjugate Gradient (CG) Algorithm

- Also gradient type, similar characteristics to SG.
- Expected to converge faster than SG: optimal decent direction is used.

	Iteration	Initial guess ψ^0	Minimum $\overline{\psi}$	Error in $\psi_1(p_r)$	Error in $\psi_2(\rho_r)$
Test 1	2	[0.5 0.5] ^T	[0.109 0.129] ^T	9.9 %	3.2 %
Test 2	3	[0.9 0.1] ^T	[0.153 0.089] ^T	53.3 %	28.8 %
Test 3	4	[0.6 0.9] ^T	[0.110 0.133] ^T	10.1 %	6.4 %

- inearity check 1 Parameter Identification
- 2 Parameter Identification (Pressure and Density)

Conjugate Gradient (CG) Algorithm

- Also gradient type, similar characteristics to SG.
- Expected to converge faster than SG: optimal decent direction is used.

ĺ		Iteration	Initial guess ψ^0	Minimum $\overline{\psi}$	Error in $\psi_1(p_r)$	Error in $\psi_2(\rho_r)$
ſ	Test 1	2	[0.5 0.5] ^T	[0.109 0.129] ^T	9.9 %	3.2 %
	Test 2	3	[0.9 0.1] ^T	[0.153 0.089] ^T	53.3 %	28.8 %
ĺ	Test 3	4	[0.6 0.9]	[0.110 0.133] T	10.1 %	6.4 %

• Conclusion: Algorithm is not stable, has to be run over and again to know the exact results, produces more error and it is computationally inexpensive and faster than SG method.

- 2 Parameter Identification (Pressure and Density)

- 2 Parameter Identification (Pressure and Density)

- 2 Parameter Identification (Pressure and Density)

- 2 Parameter Identification (Pressure and Density)

Linearity check 1 Parameter Identification 1 parameter identification (pressure) 2 Parameter Identification (Pressure and Density)

PSO1CG2

• Run first the PSO then CG algorithm.

- inearity check 1 Parameter Identification
- 1 parameter identification (pressure)
 2 Parameter Identification (Pressure and Density)

• Run first the PSO then CG algorithm.

1 parameter identification (pressure)
2 Parameter Identification (Pressure and Density)

PSO1CG2

• Run first the PSO then CG algorithm.

• This mean value from PSO is given as input to CG algorithm.

- inearity check 1 Parameter Identification
- 1 parameter identification (pressure)
 2 Parameter Identification (Pressure and Density)

Run first the PSO then CG algorithm.

• This mean value from PSO is given as input to CG algorithm.

Iteration (PSO+CG)	Initial Pressure $\psi_1 = p_r$	Initial Density $\psi_2 = \rho_r$	Error in ψ_1	Error in ψ_2
24+7=31	.1063	.138	6.3 %	10.4 %

- inearity check 1 Parameter Identification
- 1 parameter identification (pressure)
 2 Parameter Identification (Pressure and Density)

Run first the PSO then CG algorithm.

This mean value from PSO is given as input to CG algorithm.

Iteration (PSO+CG)	Initial Pressure $\psi_1 = \rho_r$	Initial Density $\psi_2 = \rho_r$	Error in ψ_1	Error in ψ_2
24+7=31	.1063	.138	6.3 %	10.4 %

• **Conclusion:** Performs better than PSO and CG individually. Stable, Low on error and moderate on computational cost.

- inearity check 1 Parameter Identification
- 2 Parameter Identification (Pressure and Density)

Run first the PSO then CG algorithm.

This mean value from PSO is given as input to CG algorithm.

- 1	Iteration (PSO+CG)	Initial Pressure $\psi_1 = p_r$	Initial Density $\psi_2 = \rho_r$	Error in ψ_1	Error in ψ_2
	24+7=31	.1063	.138	6.3 %	10.4 %

- Conclusion: Performs better than PSO and CG individually. Stable, Low on error and moderate on computational cost.
- Used with 20 particle PSO saved 22 PSO iterations, $22 \times 20 = 440$ forward model iterations.

2 Parameter Identification (Pressure and Density)

PSO2CG1

• Run first the CG and then PSO algorithm.

2 Parameter Identification (Pressure and Density)

PSO2CG1

- Run first the CG and then PSO algorithm.
- Result from CG gradient is converted into local space and PSO is run.

- nearity check 1 Parameter Identification
- 2 Parameter Identification (Pressure and Density)

PSO2CG1

- Run first the CG and then PSO algorithm.
- Result from CG gradient is converted into local space and PSO is run.

- inearity check 1 Parameter Identification
- 1 parameter identification (pressure)
 2 Parameter Identification (Pressure and Density)

PSO2CG1

- Run first the CG and then PSO algorithm.
- Result from CG gradient is converted into local space and PSO is run.

• **conclusion:** A stable, low error and computationally economic algorithm. Performed better than PSO1CG2.

- inearity check 1 Parameter Identification
- 2 Parameter Identification (Pressure and Density)

0.16

PSO2CG1

0.16

- Run first the CG and then PSO algorithm.
- Result from CG gradient is converted into local space and PSO is run.

0.16

iter 4

- **conclusion:** A stable, low error and computationally economic algorithm. Performed better than PSO1CG2.
- Used with 10 particle PSO, saved 163 PSO iterations, $163 \times 10 = 1630$ forward model iterations.

 Inverse shock tube problems has proved counter is possible (non matrix and non elliptic).

- Inverse shock tube problems has proved counter is possible (non matrix and non elliptic).
- Certain closures have been presented that may be followed in future to solve other inverse fluid system problems.

- Inverse shock tube problems has proved counter is possible (non matrix and non elliptic).
- Certain closures have been presented that may be followed in future to solve other inverse fluid system problems.
- Cost functions in inverse fluid dynamics are not well behaved (2D are always non convex).

- Inverse shock tube problems has proved counter is possible (non matrix and non elliptic).
- Certain closures have been presented that may be followed in future to solve other inverse fluid system problems.
- Cost functions in inverse fluid dynamics are not well behaved (2D) are always non convex).
- Avoid shock with data point interaction for better cost function.

- Inverse shock tube problems has proved counter is possible (non matrix and non elliptic).
- Certain closures have been presented that may be followed in future to solve other inverse fluid system problems.
- Cost functions in inverse fluid dynamics are not well behaved (2D are always non convex).
- Avoid shock with data point interaction for better cost function.
- Right choice of optimization algorithm can make or break the solution: select wisely.

- Inverse shock tube problems has proved counter is possible (non matrix and non elliptic).
- Certain closures have been presented that may be followed in future to solve other inverse fluid system problems.
- Cost functions in inverse fluid dynamics are not well behaved (2D) are always non convex).
- Avoid shock with data point interaction for better cost function.
- Right choice of optimization algorithm can make or break the solution: select wisely.
- GN mostly will never perform for static initial conditions, Gradient free are best for inverse fluid mechanics problems.

- Inverse shock tube problems has proved counter is possible (non matrix and non elliptic).
- Certain closures have been presented that may be followed in future to solve other inverse fluid system problems.
- Cost functions in inverse fluid dynamics are not well behaved (2D) are always non convex).
- Avoid shock with data point interaction for better cost function.
- Right choice of optimization algorithm can make or break the solution: select wisely.
- GN mostly will never perform for static initial conditions, Gradient free are best for inverse fluid mechanics problems.
- Two new algorithms developed PSO1CG2 and PSOCG1 that can be further used.

Thank You For your Attention

